Overview of Posters Posters G

By Mildred Dresselhaus Massachusetts Institute of Technology Cambridge, MA

TOTAL

Advances in Photoluminescence 10 Dark Excitons and other Excitonic Effects **→ 8 Magnetic Phenomena** 5 (2) **Non-linear optics** 3 Characterization tools 3 **Optical Applications** 5 (7) **Non-optical applications** 24 5 - sensors doping/charge transfer 5

- FET
- other

58 posters

9

5

Advances in Photoluminescence - 10

- G.042 Lefebvre Demonstrated 8% quantum yield for suspended tubes
- G.035 Miyauchi PL maps obtained for *//* and \perp polarization to reveal E_{12} and E_{21} transitions.
- G.048 Uryu Calculated exciton levels for // and \perp polarization showing large blueshift
- G.037 Iwasaki chirality-dependent comparison of E₁₁ and E₂₂ transitions in suspended and SDS wrapped SWNTs
- G.031 Yanagi PL intensity enhanced by filling with β carotenoids
- G.034 Iakasaki PL maps used to compare spectra from many sample types (HiPco, CoMoCAT, Carbolex...)
- G.039 Sugai \uparrow PL strongly suppressed in DWNTs
- G.040 Okazaki –
- G.043 Kishi PL from inner tubes of DWNTs identified by using calibrated SWNT/DWNT mixtures
- G.030 Minami Weak UV light (< 4mW/cm²) strongly decreases PL intensity by creating mid-IR states, and result depends on SWNT environment

Dark Excitons and other Excitonic Effects - 8

- G.038 Shaver magnetic fields increases brightness of excitons, by admixing dark excitons to show B-induced splitting of PL feature (B < 45 Tesla)
- G.027 Mortimer Band gaps shifts observed especially for B \perp to tube axis and attributed to dark exciton effects
- G.026 Mortimer T dependence of PL indicates dark-light exciton splitting in 1-5 meV range
- G.041 Pimenta Excitonic effects discussed for Raman and PL, noting unusual excitonic behavior for E₃₃ and E₄₄ transitions.
- G.035 Malic Chirality dependence of optical absorption is calculated with analytic solutions given for zigzag tubes
- G.028 Jiang Calculated excitonic effects shown to be heavily chirality dependent, stemming from trigonal warping effect
- G.029 Park Resonance window is strongly chirality dependent, and comparison between theory and experiment shows that resonance window for metallic tubes is larger than for S tubes.
- G.024 Harigaya Excitonic effects in BN nanotubes are calculated and compared to SWNTs.

Magnetic Phenomena – 5 (2)

- G.055 Enoki Unusual spin magnetism at graphene and nanographite edges are reviewed with emphasis given to singularities in electronic states for zigzag edges
- G.054 Shaver Anisotropic magnetic susceptibility allows SWNT alignment in high magnetic fields (up to 58 Tesla). Optical studies yield dynamics of spin alignment, tube length distribution, bundling effects.
- G.053 Kitaura Various magnetic properties of magnetic metallofullerenes inside carbon nanotubes
- G.052 Hayashi, magnetic properties of a Co nanorod encapsulated MWNT are studied
- G.051 Yang Theoretical investigation of interplay between structure and magnetism for a nanowire which can stretch by up to 20% with small energy cost.

G.038, G.027 – High magnetic fields used to break symmetry to study dark excitons.

Non-Linear Optics - 3

- G.032 Byeon Strong third harmonic generation is observed for freely suspended SWNTs
- G.047 Ferrari Carbon nanotube composites in polymer films and solutions are used for saturable absorbers, with promising performance for spectral tunability and for passive mode-locking of ultrafast lasers
- G.044 Shimamoto Non-linear transmission and reflection of SWNTs are measured using Z-scan technique

Characterization Tools - 3

- G.045 Vieira Properties of SWNTs functionalized by COOH and C-H derivatives and modified by cutting to short lengths are characterized by various optical and chemical techniques.
- G.046 Jeong The concentration of SWNTs and thin MWNTs in a sample is found by optical absorption based on prior extinction coefficient determination.
- G.057 Matsubara The effects of various plasma treatment to improve the mechanical properties of vapor grown carbon fibers are investigated using both optical absorption and photoluminescence and other characterization techniques.

Optical Applications

- G.036 Dericke The optical switching of polymerfunctionalized SWNTs when used as optical gate shows 4 orders of magnitude conductance change for dark and illuminated devices.
- G.025 Maksimenko Radiation pattern for carbon nanotube arrays is calculated for device applications
- G.050 Gorjizadeh Electron-phonon coupling is calculated with regard to effects observed in electron transport at high bias voltage in devices.
- G.059 Britz The performance is demonstrated for a transparent conductor based on a SWNT network with a broad range of tunability for the conductivity and transparency
- G.058 Sasaki The graphite/C₆₀/graphite sandwich system is investigated theoretically to understand the mechanism for superlubricity observed experimentally.
- G.030, G.057, G.032, G.047, G.045, G.031 Research leading to applications
- G.041, G.055 related to nanographene

Non-Optical Application	ns – 24
- sensors	5
 doping/charge transfer 	5
- FET	9

- other 5

G.001 – Murata – Biosensor specific to pig serum albumin

- G.015 Hunt Biosensor CNTs and Si Nanowire molecular sensors
- G.022 Song Biosensor of glycines on SWNTs binding to alcohols
- G.009 Seo Toxic gas sensor better than ppm (SO₂, NO₂)
- G.023 Lee Flow rate sensor single SWNT detection (detects increasing flow rate inducing higher voltage)

Secondary sensor applications G.052 (magnetic) G.016 (physical property)

Non-Optical Applications – 24

- sensors 5
 doping/charge transfer 5
 FET 9
 other 5
- G.007 Suzuki mechanism was studied for electron irradiation caused band bending, creation of energy barriers, defects, metal-semiconducting transitions
- G.012 Li uni-polar n-type semiconducting behavior found from Fe filling of core. Can make ferromagnetic semiconductor SWNTs
- G.013 Li uni-polar n-type semiconducting behavior found from Cs filling or core. Shows Coulomb blockade.
- G.014 Shishido Filled core with Co, Li, Na, K, KCI, Csl. Alkali metals make n-type SWNTs from pristine p-type SWNTs. Made p-n junction from Cs (donor), I (acceptor) 20nm quantum dots
- G.008 Suzuki One drop of APTES solution used for charge transfer to convert p-type to n-type devices.

Non-Optical Applications – 24

- sensors	5
 doping/charge transfer 	5
- FET	9
- other	5

G.002 – Wei – CNT-FET can operate either n-type or p-type with tunability

- G.004 Vijayaraghavam model to explain hysteresis in gate modulated FFT
- G.019 Bethoux FET operation up to 8GHz demonstrated
- G.005 Umesaka G.021 Miyato Surface potential of CN-FET, where electrodes are different metals is measured by Kelvin probe microscopy

- G.006 Maki Electrodes of two different metals are used to inject electrons and holes at the same time utilizing difference in working functions.
- G.010 Ohnaka Grid inserted PECVD is used to achieve growth of 90% S/SWNT by electrical breakdown of M/SWNT
- G.017 Lee Achieved unipolar FETs by controlling double layer configuration of catalyst during SWNTs growth.
- G.018 Wu Achieved negative differential conductance and hysteresisfree transport for SWNTs suspended from the tips of vertically aligned nanofibers.

Non-Optical Applications – 24

- sensors5- doping/charge transfer5- FET9- other5
- G.011 Rinkio Memory element achieved by placing charge trap at a controlled distance from SWNT.
- G.016 Sakurai Non-volatile memory controlled by spontaneous polarization in ferroelectric film used as a gate of CNT-FET
- G.003 Lee One quantum dot is used as a gate to manipulate transport in another quantum dot.
- G.020 Shah Dependence of I-V characteristics on temperature and tip-SWNT overlap area.
- G.049 Hsu Calculation of reflectance and transmission coefficients for transport in a molecular device.

Future directions

Photophysics

- Increase photoluminescence efficiency
- Clarify excitonic behavior for metallic tubes and higher E_{ii} semiconducting levels
- Establish behavior of dark exciton states
- New Techniques
 - NSOM
 - Rayleigh
 - Aberration corrected TEM imaging

General Goals

- Control synthesis specific (*n*,*m*) tubes and their placement
- Achieve large scale nanotube production, with high quality, low cost
- Promote scientific discovery, device concept innovation, and nanotube-based product development

- Interaction of carbon nanotube research with related non-carbon nanotubes, nanowires and other nano-structures