NT06: Seventh International Conference on the Science and Application of Nanotubes

June 18 - 23, 2006

Nature of Optical Transitions in Carbon Nanotubes and Population Analysis

A.Jorio, M. A. Pimenta and P. T. Araujo

Physics Department, UFMG, Belo Horizonte, Brazil.

S. K. Doorn

Chemistry Division, Los Alamos National Laboratory, USA

S. Maruyama

Dept. of Mechanical Engineering, University of Tokyo, Tokyo, JAPAN

M. S. Dresselhaus (MIT)

Y. Oyama, J. Jiang, R. Saito (Tohoku)

Outline

Introduction – Resonance Raman Scattering maps The exciton *and* the band-to-band pictures in carbon nanotubes

The Resonance Raman Scattering (RRS) Maps

Fantini et al. PRL (2004)

The Resonance Raman Scattering (RRS) Maps

...sample processing

The Kataura plot

The optical transition energies E_{ii} as a function of carbon nanotube diameter d_t

Proposed by H. Kataura in 1999, considering first neighbour π -only TB model

As shown by the ratio problem...

The ratio problem for E_{22}^{S} and E_{11}^{S} E_{22}^{S} / E_{11}^{S} smaller than 2!

Why do we have the ratio problem?

Why do we have the ration problem?

e-e attraction plus e-h repulsion gives rise to a net blueshift

How is the big picture?

The big picture: E_{ii} s obey a scaling law

 $E_{11}(d_t) = E_{22}(d_t/2)$ 3.0 2.5 Transition Energy (eV) 1.5 1.0 E_{11}^{S} 0.5 1.5 2.0 0.5 1.0

 E_{11}^{S} and E_{22}^{S} follow a single scaling law when plotted as a function of p/d_t

Inverse Diameter (1/nm)

All the physics is for $0.7 < d_t < 1.3$ nm and $0.6 < E_{ii} < 2.7$ eV

PL – Bachilo et al. Science 298, 2361 (2002)

RRS – Fantini et al. PRL (2004)

The RRS of alcohol SWNTs

E₃₃S

E₄₄S

50 mm

E₁₁^M

Alcohol-SWNTs Maruyama

10 µm

RRS on alcohol CVD SWNTs

Measurements over a broad energy (1.26 to 2.71eV) and diameter (0.7 to 2.3nm) range

Now we have to analise the E_{ii} and ω_{RBM} !

Good agreement with published $E_{22}{}^{S}$, $E_{33}{}^{S}$ and $E_{44}{}^{S}$

Bachilo et all. Science 298, 2361(2002)

1.0

1.2

1.1

1.3

0.9

0.8

0.7

The difference between the scaling laws

Chirality dependence of E_{ii}

Similar to prediction by the extended tight binding (ETB) within experimental accuracy (~ ±30meV)

Summary

1 – Optics is a well established tool to characterize single wall carbon nanotube samples.

Acknowledgement

- M.A.Pimenta, C.Fantini, P.T.Araujo, I.O.Maciel, L. G. Cancado (UFMG) RSS
- **H.B.Ribeiro and F.Plentz** (UFMG) (PLE)
- L.O.Ladeira, R. G. Lacerda, A. Ferlauto (UFMG) (Samples)
- A. P. Santos and C. A. Furtado (CDTN) (Chemistry)
- **S. K. Doorn** (LANL) (RRS)
- M. S. Dresselhaus, G. Dresselhaus, S. G. Chou, Ge. G. Samsonidze (MIT) (exp and theory)
- R. Saito, J. Jiang, A. Grueneis, N. Kobayashi, Y.Oyama (Tohoku) (theory)
- H. Chacham (UFMG), R. B. Capaz (UFRJ), S. G. Louie (Berkeley) (Theory)
- S. Maruyama (TU), M. Strano (UI), D. Resasco (UO). A.M.Rao (samples)