

Carbon Nanotube Biosensor for the Assessment of Personal Quality of Life

Katsuyuki Murata¹, Masuhiro Abe², Yasuo Ifuku³, Atsuhiko Kojima⁴, Mitsuaki Shimuzu⁵, Masatoshi Maeda⁶, Tatsuaki Ataka¹, Kazuhiko Matsumoto⁷

1 Olympus Corpration, CREST-JST and NEDO, 2 NEDO, 3 Mitsubishi Kagaku latron, 4 Mitsubishi Chemical, 5 AIST, 6 Tsukuba University, 7 NEDO, Osaku University, CREST-JST, and AIST

Prolegomenon Quotation from our HP

- Future Creation Laboratory of Olympus Corporation
 - Our goal: enhancement quality of life (QOL) on mind and body
 - The Future Creation Laboratory is committed to pursuing a variety of research projects aimed at identifying and creating future values for enriching people's lives.

Our researches

The Future Creation Laboratory conducts highly original research in "HIKARI"-HI Technology, primarily focusing on four areas:Bioscience, Humanware, Optics and Nanotechnology and Ubiquitous energy. Closely linked, these fields will yield new discoveries and values for the future.

Approaches taken from four research domains

`We explore what future generations

want and what universal values will be like in the future. 3

Bioscience domain -Enhance QOL on mind and body-

Our future dreams and goal

In the area of carbon nanotube (CNT) biosensors research, we are attempting to establish a technology that allows the ultrasensitive measuring (so called "single molecule detection") of biomolecules by applying the CNT single electron transistor to biosensors.

This technology will open a new possibility for home physical checkups and will contribute to preventive medicine and health management during recovery.

Introduction What is Personal QOL

This project is "<u>Research and</u> <u>Development of Nanodevices for</u> <u>Practical Utilization of</u> <u>Nanotechnology</u>" in NEDO

Challenge to nanotechnology of Olympus

We take the fastest problem of aging speed underhand NEW WORLD COMING:

Current Japan is super aged society

ECURITY IN THE 21ST CENTURY

WebPDF file ;21C US security in the 21st centry

Ropulation 60 Years and Over

Country of current aged society: about 10

20 years past: about 20

Personal QOL system

~Aims to reduce medical cost and promote healthy intentions~

•Feature

•24 hours monitor with a terminal in home

•Biotip, microTAS

Medical care and welfare service institution

Positioning of this study

Fundamental studies of CNT-transistor

CREST-JST project: Olympus, AIST, Mitsubishi Kagaku latron, & Osaka Univ.

Relationship between JST & NEDO Project

- CREST-JST Project
- Mainly fundamental research
 - CNT-field effect transistor (FET)
 - using CNT-FET in biosensor

- NEDO Project
- Investigation for practical use
 - measure yield, , quantifiability, selectivity, sensitivity, stability, reliability
 Establishment of micro total analysis system (TAS) by MEMS technology

Position of CNT biosensors in CNT applications

Contents of this presentation

- What is CNT biosensor?
- Problems for practical use and solutions

What is CNT-biosensor?

- We studied
 - Amperometry
 - High reliability
 - Potensiometry
 - High Sensitivity

Previous CNT-FET biosensor research

We achieved detection of 6.8 fmol/L of DNA using a CNT-FET biosensor

Why did we select a CNT biosensor for PQOL system?

- PQOL system requires
 - wearable biosensor
 - small and light
 - microTAS
 - real time sensing
 - non disposable

CNT biosensor compared with conventional protein sensing methods

	CNT Biosensor	Chromatography	Chemical luminescence
Sensitivity	c.a. 1 μ mol/l	nmol/l order	most high sensitivity
	conventional study		
Mobility	yes	yes	no
sensor array	yes	no	yes
Real time sensing	yes	no	no
Not disporsable?	yes	no	no

Problems for practical use of CNT-FET based biosensor

- CREST-JST
 - Fundamental design
 - Stability & reliability
- NEDO
 - Quantifiability
 - Sensitivity
 - Yield
 - Selectivity

Contamination provides less stability of CNT-FET

Washing CNT using aprotic solvent

What is DMSO & DMAC

- aprotic solvent
 - Dimethylsulfoxide (DMSO)
 - Dimethyl acetamide(DMAC)

Aprotic solvent features

- hydrophobic
- hydrophilic
 - strong dipole moment
 - strong nucleophilicity(basic)

Experiments and sample preparation

• Photolithography

• CVD

- EtOH 750sccm
- H2 500sccm
- @900°C 10min.
- Wash by DMAC

Au/Ti Back Gate

CVD process contaminates the CNT with pitch, amorphous carbons and so on

Photolithography process makes lots of photoresist residue.

Vd-Id Characteristic of CNT-FET Before and After Washing

Results: top gate is best structure

• CNT must be kept clean for optimal CNT-FET performance

- Top-gate CNT-FET biosensor
 - CNT kept clean because CNT is covered with SiNx.

Top-gate CNT-FET illustration

Top-gate structure prevents adsorbing contamination on CNT

Water, oxygen and other contaminates cannot adsorb on CNTs

Top-gate CNT-FET has high stability

Little change in drain current 1.2 open air **Previous** 1.1 work 1.0 Our top-gate 0.9 device 0.8 300 600 900 1200 1500 1800 0 time/sec.

Top-gate CNT-FET produces no hysteresis

Little hysteresis occurred in our top-gate device

Top-gate CNT biosensor has low sensitivity

Why low sensitivity?

No modulation by schottky barrier

Top-gate FET was modulated by only channel part, back gate FET was modulated by schottky barrier and channel part.

Double gate structure enhances CNT-FET sensitivity

Double gate enhances sensitivity

Biosensing

CNT-FET can sense proteins based on antigen-antibody reaction

Experimental fixation of protein

Proteins

Pig Serum Albumin (PSA) anti-Pig serum albumin (a-PSA)

a-PSA was immobilized on CNT-FET, and PSA in solution was sensed.

Immobilizing PSA on Top-gate

Phosphate buffer, including a-PSA, was dropped on a top gate of CNT-FET. a-PSA was physically adsorbed on top-gate. Top Gate a-PSA + 10 mM Phosphate buffer (pH 7.4)

Experimental Sensing

•Silicone rubber wall surrounded top-gate.

•Test solutions added into pool on top-gate, PSA was trapped by a-PSA on top-gate.

• FET characterizations were measured, and PSA concentration represented a decrease in drain current.

Biosensing

Relationship between drain current change and PSA concentration

Drain Voltage: +0.1 VBack Gate Voltage: +5 VTop Gate Voltage: +1 V0.1 M Tris Buffer (pH = 8.0)

It is the highest sensitivity of the kinds type CNT biosensor.

Sensitivity is possibility to improve with amount of added PSA or top-gate electrode area.

Our CNT biosensor obtained high sensitivity

- at least 20 nmol/L of sensitivity limit
- In the case of top-gate area 10000mm² and 10 micro L of test solution added.
- Sensitivity limit is changed by above situations.

Our device can be used consecutively after washing process

Selective protein sensing for CNT biosensor

First reported study of selective protein sensing

CNT-FET Biosensor Problems Do we really observe antigen-antibody reaction?

If protein selectivity is not confirmed, we cannot be sure of sensing by non-specific adsorption

Selective protein detection

•Test solution (shown below) was poured on top-gate of PSA biosensor or MIgG biosensor.

•FET drain current measured, and PSA or MIgG concentration represented a decrease in drain current. .

Test solutions:

Tris buffer without antigens Tris buffer containing PSA Tris buffer containing MIgG Tris buffer containing both PSA and MIgG

Drain current decrease at PSA biosensor

Drain Voltage: +0.1 V Top Gate Voltage: +1 V Back Gate Voltage: +5 V Solution: 0.1 M Tris Buffer (pH = 8.0)

Table. Drain current of PSA biosensor which antigen solution was poured.

PSA	MIgG	Drain current
[nmol/l]	[nmol/l]	[nA]
0	0	23.84
0	700	23.85
70	0	23.47
700	0	22.72
700	700	22.97
7000	0	21.92

Drain current decrease at MIgG biosensor

Drain Voltage: +0.1 V Top Gate Voltage: +1 V Back Gate Voltage: +5 V Solution: 0.1 M Tris Buffer(pH = 8.0)

Table. Drain current of PSA biosensor which antigen solution was poured.

PSA	MIgG	Drain current
[nmol/l]	[nmol/l]	[nA]
0	0	106.59
0	700	103.08
0	7000	101.43
700	0	106.54
700	700	103.10

Conclusion

- We successfully achieved real-time sensing and selective detection of proteins using top-gate CNT-FET.
- Our CNT biosensor demonstrated high sensitivity, high stability, and selectivity.
- CNT biosensors have potential uses as industrial product.