

HR-TEM imaging of molecules and ions trapped inside carbon nano-spaces

Kazu Suenaga AIST, Tsukuba

The minimum of HR-TEM theory (an advantage of Cs-uncorrected TEM) 0.21nm

At 120 kV Cs=0.45 mm

Y. Sato

Direct observation of graphen network in the case of SWNT

TEM imaging of individual functional groups of fullerene derivatives

> Liu, Koshino et al., PRL 96 (2006) 088304

Fullerene derivatives C_{60} - C_3 NH₇

Liu et al., Specimen: Kataura and Mrzel

Detachment of H atoms or a methyl group due to the incident electron beam

A core-level shift of N K-edge.

C₆₀-C₃NH₇ peapods

Visualization of ions trapped inside carbon nanospaces (K, Cs, Iodine and FeCl₃)

> Guan et al., PRL (2005) Sato et al., (unpublished) Guan et al., (unpublished)

FIG. 1: Top and side views of geometric structures of potassium intercalated C₆₀-peapods, (a) K_1C_{60} , (b) K_2C_{60} , (c) K_3C_{60} , (d) K_4C_{60} , (e) K_6C_{60} , and (f) K_8C_{60} . Gray and red circles denote carbon and potassium atoms, respectively.

S. Okada PRB(2005)

- Typical doping level : $x = 1 \sim 2$ - (in K_xC₆₀@SWNT)
- Pichler et al. reported the C_{60}^{6-} in heavily doped peapods
- "Intra- and inter-peapod doping sites"

Determination of handedness of chiral DWNTs

Liu et al., PRL 95 (2005) 187406 Hashimoto at al., PRL 94 (2005) 045504 Zhu et al., CPL 412 (2005) 116

(29, 28) @ (36, 31)

Interband optical transitions in left- and right-handed single-wall carbon nanotubes Ge. G. Samsonidze et al., Phys. Rev. B69 205402(2004)

The (n, m) nanotube has a mirror image of (m, n). Let's define the right handed nanotube when n>m.

Cf. Wildoer et al., Nature (1998), Mayer et al., J. Micors. (2003),

Four combinations of different optical isomers in a chiral DWNT

(a) (14, 3)@(17, 10)
(b) (3, 14)@(17, 10)
(c) (14, 3)@(10, 17)
(d) (3, 14)@(10, 17)

(14,3)@(17,10)

Four combinations of different optical isomers in a chiral DWNT

(a) (14, 3)@(17, 10)
(b) (3, 14)@(17, 10)
(c) (14, 3)@(10, 17)
(d) (3, 14)@(10, 17)

Handedness relationship in DWNT

DWNTs with the same handedness (R@R or L@L) are more likely to be found. Not randomly formed!?

Hetero (R@L or L@R) /Homo (R@R or L@L) ~4/16

Specimen	Inner nanotube	Outer nanotube
1	R	R
2	L	L
3	L	L
4	L	L
5	R	R
6	R	R
7	L	R
8	L	L
9	R	L
10	L	R
11	L	L
12	L	L
13	R	R
14	R	L
15	R	R
16	L	L
17	unidentified	R
18	unidentified	R

Atomic defects in graphene layers

R. Telling et al., Nature Mat. (2003)

- Topological defect (5-7 pair through the Stone-Wales process)
- Atomic vacancy
- Adatom Knock-on displacement of carbon atoms
- Inter-lay due to the energetic particles (electron beam)
- Combine At 120 kV electrons
- Combinations

have been predicted by theory.

Topological defects

Vacancy-adatom pair

Nature 430(2004) 870

Formation and annihilation of inter-layer defects

A single interstitial and vacancy pair (I-V pair)

A couple of interstitial and vacancy pairs: a divacancy and a cluster of two interstitial atoms Defect formation frequency during electron microscopic observation

Electrons accelerated at 120 kV 60,000 electrons / nm² in a second 300 seconds dose

 $0.3 \text{ defects per nm}^2$

160 barns (estimated cross section for atomic displacement)(180 barns predicted at 100kV)

(29, 28) @ (36, 31)

Inter-layer defects in bi-layer graphen (DWNT)

Structural models for the interstitial and vacancy pair defect

(a) A single I-V pair
(b) A couple of I-V pairs
(c) Simulation in side-view
(d) Simulation in top-view

R. Telling et al., Nature Mat. (2003)

Both relaxed by a semiempirical potential

Temperature dependence for the I-V defect formation

Recombination of I-V pair defects

The unique structure of individual carbon nanotubes has been finally determined!

•Chirality relationship (n1, m1)@(n2, m2) PRL 05(Hashimoto), CPL 05 (Zhu)

•Handedness

PRL 05(Liu)

•Defect types

Nature 04(Hashimoto), PRL05(Urita)

•Atomic-level impurities and dopants

Science 00(Suenaga), PNAS 04(Hashimoto), PRL 05(Guan)

Collaborators

AIST S. Iijima Z. Liu Y. Sato M. Koshino (JST) L. Guan A. Hashimoto A. Gloter K. Urita H. Zhu H. Wakabayashi T. Yumura (JSPS)

AIST/NRI H. Kataura Nagoya Univ. H. Shinohara T. Okazaki T. Sugai and others...

Bejing Univ. Z. Gu Z. Shi

• <u>A</u>ST

Tokyo Univ. E. Nakamura H. Isobe H. Yorimitsu

JST/SORST S. Bandow K. Hirahara M. Kociak K. Ajima M. Yudasaka

